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HIGH POWER MICROWAVE PLASMA PULSE COMPRESSION

I INTRODUCTION

Recently there has been a great deal of effort going into producing high

power microwave pulses. If a device produces only raw power, such as a

vircator or beam plasma source, handling or conditioning the microwave pulse

is difficult. However, if there is good control of the pulse parameters one

can consider pulse compression, the subject of this paper. With a high power

S,_wide band amplifier, one could produce frequency chirped pulses and then

compress them by propagating them through some sort of dispersive element. If

* "the dispersive line power capacity exceeds the saturated level of the

amplifier, power multiplication to very high levels are possible. Recently,

free electron lasers have demonstrated wide-band, high gain amplification at

very high power.l12 High power pulse compression appears possible if a

suitable dispersive device can be found.

The original methods to compress radar pulses made use of the dispersive

properties of waveguide modes. 3  Modern radars generally handle the pulse

compression in the receiver at low power using lumped circuitry.4 However,

for some applications it is desirable for the outgoing (high-power) pulse to

be compressed in time and power multiplied. Pulse compression could be

handled at high power if a high-power efficient (non-lossy) pulse compressor

could be found. We propose that a plasma filled waveguide would be able to

handle high-power pulse compression. Since it is already ionized, it can

handle very high power and it is very dispersive near one of its natural

Manuscript approved September 24, 1985.
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% frequencies. For example, a short ( meter) length system can provide low-

loss, roughly hundred-fold pulse compression of a 20 nsec, 10% bandwidth x-

band microwave pulse.

Section II describes the plasma pulse compression of a chirped pulse

output of a high power amplifier. Section III shows that the pulse of a

coherent oscillator can also be compressed by a plasma filled waveguide. The

'i. idea is to change the plasma properties in time, as the pulse enters, so that

a frequency chirp is artificially induced after the fixed frequency pulse has

been generated. This is to take advantage of the fact that at high power, at

least at X-band and above, oscillators provide both higher power and higher

* efficiency then amplifiers. Recently, high power oscillators have

- demonstrated both long time, single mode operation at 20 MW,5 and also have

-. demonstrated phase locked operation. 6  Finally, section IV briefly discusses

. other aspects of high power microwave propagation in plasmas. Additional

issues are discussed in two appendixes.

2
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II Propagation of a Chirped Pulse

In this section, we analyze the propagation of a pulse whose frequency

- - varies with time in a dispersive medium. The application envisioned is high

power microwave pulse compression in a plasma filled waveguide. Imagine that

a pulse enters the guide at t=O and that the guide has length L. If the first

part of the pulse has group velocity v (0), the time to emerge out the other

* end of the guide is T=L/V go. For a portion of the pulse entering at a later

time t, the condition that it also emerge at time T is

T =L/V = t + L/V(t) ()
go g

where V (t) is the group velocity of the portion of the pulse that entered at
g

time t. For pulse compression V must be an increasing function of time to
g

enable the later parts of the pulse to "catch up" to the earlier portions.

Notice that while the frequency must be well controlled as function of time,

there is no need for the amplitude to be particularly well controlled. Thus,

utilization of this scheme is less demanding than other methods for short

pulse propagation requiring both frequency and amplitude control. This means

of pulse propagation is shown schematically in Fig. 1. In Appendix A, we show

that a stationary phase analysis of the signal propagation verifies this

analysis. There, it is shown that pulse compression by a factor of fifty to

one hundred is theoretically possible.

Since the group velocity is a specified function of frequency, the

variation of group velocity with time implies a variation of frequency with

time, or in other words a "chirp" to the pulse. For high-powers, a plasma

loaded waveguide is very attractive because, first, the plasma can withstand

~KK 3



"- very high power propagation, and second, the plasma can be very dispersive

near one of its natural frequencies, implying short system length. In the

following two subsections we consider the propagation of microwaves in an

unmagnetized plasma near the plasma frequency, and in a strongly magnetized

plasma near the cyclotron frequency. The dispersion relations for these two

cases are shown in Fig. 2.

A. Unmagnetized Plasma

If a uniform, unmagnetized plasma fills the wave guide, the dispersion

relation is

2 2c2 2 2
W k + W+ W (2)

p co

where w is the plasma frequency and W is the vacuum guide cutoff, -- p co

frequency. This is the same as an empty guide, except that the effective

cutoff frequency is significantly increased with a plasma fill from

2 2 1/2
Wco to (W + W ) . The transverse mode structure is also similar to that

of an empty guide. The plasma filled guide, as a dispersive medium, offers

the advantage over the vacuum guide in that if w -p the medium is highly. : p co

dispersive far above the vacuum fundamental wave guide mode cutoff

frequency. Thus mode competition can be eliminated at high frequency and even

with large wave guide radius (and therefore large power).

Let us now imagine that a frequency chirped wave enters a plasma filled

waveguide. The plasma density is chosen such that the input wave frequency is

only slightly above the plasma frequency. When the wave enters the plasma

region, its wave number changes significantly. Thus, if no precautions are

taken, a large part of the signal will be reflected. However, as shown in



Appendix B, the use of a transition cell of intermediate plasma density can

eliminate this reflection. Using the fact that the group velocity is given by

V = kcw, and that w does not change as the signal enters the plasma, one

can use Eqs. (I and 2) to calculate the optimum frequency chirp for a 3 meter

guide. The result is shown in Fig. (3) for a 20 nsec input radiation pulse.

At the earliest time, the frequency is 3% above the plasma frequency. By

9W, moving the frequency further above the plasma frequency, the group velocity

increases, so the optimum chirp is a frequency which increases with time, as

expected.

B. Magnetized Plasma

A magnetized plasma is very dispersive near the cyclotron frequency.

Moreover, the waves near P have very short wavelengths and slow group

velocities. Because the group velocity becomes so small and the dispersion so

great, very short guides can be used for pulse compression. Since the wave

number in the plasma times the guide radius can now be assumed large, we

ignore neglect transverse effects and consider only parallel propagation.

For right hand circular polarization, the dispersion relation is
7

2" ' 22.' 2 W0 p

k' (3)
2 2

c c (W-0)

where P is the nonrelativistic electron cyclotron frequency. Notice that if

w<O, k increases from w/c to some much larger value as the plasma density is

raised. At no intermediate density does it go through zero or infinity.

- * Thus, if the density is adiabatically increased from zero, the wave will

propagate into the plasma with very little reflection. Alternatively, one

could use a plasma cell of intermediate density to reduce reflection as

5
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discussed in Appendix B. Once inside the plasma, (where w < )the wave

propagation is dominated by the plasma and

2

2 p
2 '(4)

c OW

and

Vg 2 c (W)/2 (5)pp
Then using Eqs. (I and 5), one can again determine the optimum frequency

i"-.r- i 10.
chirp. We assume X Band pulse so w-P=6x1O . Assuming

W-= P/2 = 3xl10 cm, w(t=O) = 0.95 0, and a 1 meter long guide, the required
pe

pulse frequency as a function of time is shown in Fig. (4). Notice that the

chirp needed is now a decreasing function of time.

6
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III. Pulse Compression of a Fixed Frequency Source

In the previous section we discussed high power pulse compression of a

chirped pulse in a dispersive line. It is also possible to compress a fixed

frequency pulse using a very similar technique. To make up for the fact that

the pulse is fixed frequency, it is necessary to change the properties of the

dispersive medium in time. This will induce a frequency chirp, which then

allows for pulse compression. For instance, if while the pulse is entering

the magnetic field changes in time, then each element of the pulse sees a

different time history. A calculation of the optimum time history of, say,

the magnetic field is much more subtle than a calculation of the frequency

chirp (Eq. (1)). The Section is divided into three subsections, in which we

first we present a general formulation, and then apply it to magnetized and

unmagnetized plasmas.

A General Forumulation.

Here we present a formulation of the problem which allows for a

straightforward numerical calculation of 0(t) (or whatever the time varying

parameter is). Then we give rough estimates for two cases; first, the

strongly magnetized plasma, which is dominated by the time change of magnetic

field; and second, the weakly magnetized plasma which is dominated by the

change in density.

Let us imagine that the plasma begins at x=O. When the pulse propagates

from just outside the plasma to just inside it, the frequency does not change

because there has been no abrupt temporal change. The parallel wave number

does change, however, because of the sharp spatial discontinuity. Once the

pulse has entered the plasma it sees no additional spatial variation, since we

assume a uniform plasma, so k is constant. But, since the medium does vary

7



slowly in time, the wave frequency, to also changes in time as the pulse

propagates through the guide.

The problem now is to determine the optimum time variation of the medium

for pulse compression. Let us say that the dispersive guide has length L and

that the pulse first enters at time t=O. In vacuum, the pulse length is tl,

so that the medium, which varies only during the pulse input, varies between

times t=O and t=t1 . Time T after time tl, the medium has no additional time

variation. We assume that at time t1 + T, all parts of the pulse reach the

end of the dispersive medium (i.e. they travel a distance L). The group

velocity of a portion of the pulse then is a function of two parameters, the

time the pulse first entered, to (second index) and the actual time t (first

0- index). Note that since we assume no variation of the medium for tt,

Vg (t,t )=V (tl,t o) for t>t1 . Then the condition that all elements of the

" pulse reach the end of the dispersive line at the same time is

t
L - r IV (t, to) dt = T V (t Ito) (6)',"t 0 g 01

where in Eq. (6), to takes on all values between 0 and t1 .
Now the time dependence of V (t,to) (as a function of two variables) is

g 0 _

in fact characterized by the time variation of a single parameter, say

0(t) (a function of one variable). The problem is to solve for 0(t) such

that Eq.(6) is satisfied. The key is to start at the last point to= t and

work backwards towards to =O. That is the microwave pulse which enters at

to=tl , sees no time variation, while the early part of the pulse which enters

at t0=0, sees the maximum amount of time variation. For to=tl, Eq. (6) gives

the result Vg(tl,tl)= L/T. This solves for P(t=t1 ).. Let's divide the time

interval from to=O to to=tl, into N subintervals, with n=O at to=tl, and n=N

8
* .* . *
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at t =0. The time interval between steps is A =t /N.
0

We already know P at n=O (that is, 0 (t=tl)). To proceed, use

* - induction. Imagine Q is known up to nj then calculate 0 (n+l). To start,

use Eq. (6) for the part of the pulse which enters at time to=tl-(n+l) A

This gives

n+l
L -T A V(t- jA, t-(n+l)A) = T V (tt -(n+l)A). (7)

g-71 1 gil

We assume that 0 (j) is known for o-j-n. Thus Eq. (7) is a relation to solve

for the single quantity O(n+l).

To solve for 9 (n+l) assume n (t) changes slowly between time steps so

that P (n+1) = O(n) + (O. For 0 t<t time is a single-valued function of

2(t). Thus, V (t,to) can be expressed as V (x,y) where x =

n(t) and y = O(t ). Then assuming the variation from one time step to the

next is small,

V ft t I (n+l)A = v rt )t nA) - 9 (8)

correct to order P, where the notation jo means that x is evaluated at j=f
,- In

and y is evaluated at j=n. Equation (8) is used in the right hand side of Eq.

(7) to replace V (tl,tl - (n+l) A ). Now we expand the left hand side of Eq.
g ot1 ,t.

(7) to order A to express the change from the previous time step, where both

sides were equal. There are two contributions to this change; first, there is

an additional time step in the summation; and second, each element in the

summation is altered because the pulse entered slightly earlier. Combining

9



both effects, Eq. (7) becomes

n V(X,y)
-A V 9(t - (n+l)A, t1- (n+1)A)+ T A gAg 1 1j o

n

n

Finally, using the fact that V rt 1- (n+l)A, t -(n+l)A) = is multiplied by

A in Eq. (9), so that correct to order A it can be replaced by

V ft - nA, t nA), Eq. (9) gives us the (desired) recursion relation for/ g 1 nA 1 n)

the change in cyclotron frequency in time, i.e.,

60 dO V (t 1 - n6, tI- nA)9V (10)"--"5 
dt -T V + ITY" 9 in j o

n
Note that the derivative of 0 with respect to time at t depends on the entire

previous history of P from tl, to t. Since we know r(t ), and V is a known

function of x and y, Eq. (10) can be used to calculate 0 backwards from t=t

to t=O. At each iteration, the entire history over the known region

P(t 1>t>t1 -nA) is used to calculate the rate of change of with respect to t

at P(t 1-nA). This allows us to calculate 0 at the next step, n+l, and so

on until we are at to=O. The same procedure holds for other time varying

plasma parameters in lieu of 0, the cyclotron frequency; for example the

plasma frequency w follows a relationship similar to Eq. (10) if the plasma
p

density is varied instead of the magnetic field. We will show an example of

this later.

," \' In the remainder of this section, we give approximate calculations

relevent to pulse compression from density changes in unmagnetized plasmas,

and from magnetic field changes in magnetized plasmas.

10



B Unmagnetized Plasma

A fixed frequency wave with frequency u) enters the plasma region at

x=O. The wave number for the part of the pulse that enters at time to$ is

given by

"'-" 2 2

k (t ) .
(11)

o 2
C

The wave number remains constant at all subsequent times because once the

pulse enters the plasma it is in a homogeneous medium. However, the frequency

does change with time as the signal propagates because the density changes in

. time. The frequency is then a function of two variables, t, the actual time,

and top the time that portion of the pulse initially entered the plasma.

Using the fact that k is constant in Eq. (11) we find a relation for

2
. tto),

2 2 2 2
, (tt) + (t)-p (to)* (12)

p p 0

Since the group velocity is V is given by the local dispersion relation, Eq.

(2), in the varying medium, Vg= kc 2/n , we find that the group velocity is
g

also a function of the two variables, t and to i.e.,

Vg(t~t ).= c(W 2 -W (t))l/2/ (62+ W (t)-tp (to)/ ° (13)
9 P0 p p 0

mj2 2

Letting w 2(t)--x and en (t )= y, then Eq. (13) becomes
p

V (x,y) = c (W2- y)/ 2 / (W2+ x-y)/ 2  (14)

r9
-

-----. 11
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Now, the derivation leading up to Eq. (10) applies except that instead of

2 2
6P and dP/dt, use 6w and dw p/dt. Thus Eqs.(14) and (10) give the optimum

density time variation for pulse compression..

To continue we give a crude estimate of the required density change. If

the pulse length of the entering pulse is t1 , the group velocity of the

portion of the pulse which entered the plasma last is

_2 2 i

V (tilt 1 = c(W 2  (t ))1 2/. (15)
g Ip

At time tI the group velocity of the part of the pulse that entered at t=O is

V. (tlO = c(W 2_ 2(0))1/2/(W 2+ 2 (t) ( 2 (0)) 1/2 .  (16)

V (tilt I) must be greater than Vg(ti,o) in order for there to be pulse

compression. For this to be true, w (t) < 2 (o); the density must be a

decreasing function of time.

Figure (5) shows a calculation of the optimum density as a function of

time. The vertical axis is w 2 in sec - 2. We assumed tl=20 nsec, T=60 nsec
p

and w = 6 x 1010. The density is a decreasing function of time as discussed.

Since the required density drop is over a very short time scale, it is

not feasible to rely on recombination or attachment to reduce the density.

2
The more viable approach to reduce W is to use an inverse theta pinch.

p

Imagine that at t=0 the plasma is weakly magnetized so that W >> . Thus the
p c

magnetic field could confine the plasma, but it would have very little effect

on wave propagation if w>O . For instance in our X-band pulse compression
c

example, a magnetic field of only 500 G (5 = 9xlO ) could confine a plasma

10having w 6 x 10 If the magnetic field changes quickly, the density

12
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should drop due to the plasma being frozen in the field. The variation in

density should be approximately what is required if the magnetic field were

reduced by 20% over the 20 ns pulse time. The flux change in the plasma over

20 nsec implies a voltage of only one kilovolt (for a single turn coil), an

energy change of 0.1 Joule per centimeter and a power investment of 5

Megawatts per centimeter. These values are well within the range of modest

pulsed power technology.

C. Magnetized Plasma

We now consider the second approach to pulse compression in a time-

varying dispersive plasma, the propagation of right hand circularly polarized

wave with frequency near the electron cyclotron frequency. In this case we

assume that the cyclotron frequency changes with time. However, as we have

just seen, a change in cyclotron frequency implies a concernment change in

density, since over the nanosecond time we consider, the plasma is frozen into

the field (or 2 w remains constant).
p

As stated in Section IIIB, when the wave enters the plasma at time to at

fixed frequency w its wave number becomes

2
2 p 0k (t)= p 2 (16)

c ro (t) -

assuming kc/w>>l. As in the previous subsection, we then determine

O(t) 2 (t)

W(tt )2 • (17)
0 2 W (t)W

p (t) (to
0

13
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4.j 2
Using the fact that the flux is frozen into the plasma and w /P is constant,

Eq. (17) becomes

(t'to) = 1 + W/P(t) fl _ o(t)/Q(t)) (18)

A similar calculation for the group velocity gives the result

2c W 1/2 2
- V (t't ) = (t) (t) -, (0(t) - , (19)g po 1 + w ri (t)

NO 1 (t (t 0)

where w is the plasma frequency at t=o. With x= P(t) and y = O(t ), Eq.
po 0

(19) above is in the form given in Eq. (10), so that Eq. (10) can be used to

calculate the optimum time dependence of P(t). One can now show with

straightforward manipulations that if V(t1 ,t1 ) > V(t1,O), then

P(tl) P(o). Thus for pulse compression, the magnetic field must be

compressed. From Eqs. (10) and (19), one can calculate the optimum dependence

of the magnetic field in time. Figure 6 shows the calculated dependence of

P(t) for a 50 nsec pulse of microwave radiation with w = 6 x 10 for a

guide with T 150 nsec.

-'-1
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IV. Other Plasma Effects

In this section we briefly discuss some additional possibly deleterious,

effects of the plasma on pulse propagation and compression. We start with a

discussion of plasma wave damping, then discuss bleaching, and finally

speculate on the effects of parametric instabilities.

A Wave Damping in the Plasma

We begin with a study of microwave damping ( absorption) in the

unmagnetized plasma. Since the phase velocity is very large and there is no

magnetic field (or very weak field), then only collisional damping will be

important (not Landau or cyclotron damping). The dispersion relation for a

transverse wave in an unmagnetized plasma becomes
7

22 
2

.kc-7- ! P (20)

2(W + iv) 
(

where v is the electron momentum transfer collision frequency. If the

oscillating velocity of electrons in the wave field, V0., is small compared to

the electron thermal velocity, then v is given by

1,5 3/2

V = 3.4 x 10 T /n , (21)e e

," where v is in sec-1, "Te is in electron volts, ne is the electron density in

*i! cm- 3 and A is the Coulomb logarithm (usually between 5 and 10). If the

microwave field amplitude is large, and the oscillating velocity becomes

comparable to or greater than the electron thermal velocity, then Te is

enhanced by the oscillating motion of the electrons and v is further

reduced. We will, as a guide, replace Te with Te + mV2os in the event the

15
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latter term is significant." -1

For example, if w is 3% above the plasma frequency and w/c=2 cm , as

with our X-band example, then the wave absorption e-folding length is 5 meters

in a Te = leV plasma. The actual damping length would be considerably longer

* * -because the temperature probably would be greater than 1eV at the 100MW to IGW

microwave power level in a 10 cm radius waveguide; also Vos may be comparable

• to the thermal velocity. Thus, damping of the wave by the plasma should not

be a significant loss mechanism for the unmagnetized case.

We now consider the magnetized case. As we will see, conditions are more

stringent, but the magnetized plasma pulse compression still remains a viable

scheme. In this case the wave now has low phase velocity and Landau and

cyclotron damping must also be considered. We first consider collisional

damping. The dispersion relation becomes
7

2
2 2 2

k 2= w p(22)2 (W -O- iV)

~ -~,10 10For the example of Section II B, with w-O=6xlO10 and w 3x1O0, and v =
pe

7.5x10 6 for a IeV plasma. Also if we take w-0-0.08( which is a reasonable

-1 3 -1average value, then k r 4/3 cm and ki 5x10 cm Thus, the damping

length is about 2 meters, longer than the dispersive medium. Hence

collisional damping is negligible, particularly if the temperature is greater

than 1eV.

Next, we consider cyclotron damping. This could be important if

(P-W)/k - V where V is the electron thermal velocity. For the example we
el e

have been considering, cyclotron damping is negligible as long as the

temperature is much less than 300 eV. Thus neither cyclotron damping nor

collisional damping should be important for the magnetized plasma pulse

16
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compression. Landau damping will not be much less important then cyclotron

damping because "/k>)w)/k.

B. Bleaching Effects

*The damping and absorption of the wave in the plasma can in some

* .circumstances be beneficial. Imagine that the wave, either before or after

compression, is preceeded by an undesirable prepulse. As the wave is sent

through a low temperature (and perhaps higher density) plasma cell, the

prepulse collisionally damps out, but in doing so, the absorbed prepulse

energy would heat the plasma to a sufficiently high temperature that the main

K; pulse which follows would be undamped. The calculation of the plasma

parameters necessary for bleaching as a function of the prepulse is straight

forward and will not be presented here.

C. Parametric Instabilities

Whenever a high power beam of electromagnetic radiation passes through a

plasma, there is a potential for parametric instability. These are important

when the oscillating velocity of electrons in the wave electric field is

comparable to, or greater than, the electron thermal velocity. This

oscillating velocity in an unmagnetized plasma is given by

5 1/2
V 2.5 x 10 1I A cm/sec , (23)
os

where the wave irradiance I is given in W/cm 2 and wavelength X is in cm. The

- * ratio of oscillating energy to thermal energy is

"th =W1.8 x lo-
wT (24)

"7os/th

• " ;.17



where T is in ev.
e

The scope of parametric instabilities is very extensive and we can give

here only a very superficial discussion. 8  We consider first the unmagnetized

case. The possible parametric process is the decay of the microwave (pump)

into an electron plasma wave oscillation and an ion wave (density

oscillation). Since the growth rate usually scales as Wos/Wth (which can be

larger than unity), these parametric instabilities are a potential problem.

However, in the pulse compression case, it is power, not power

density which is important. Thus the power density can always be reduced by

taking a larger guide radius until one is below threshold for parametric

instability.

Moreover, parametric instabilities depend on a precise phase relation

between the pump wave and the decay waves. In this respect, the frequency

. chirp of the pump wave, can be a strong stabilizing effect. An analogous

problem has been worked out in spatially varying media. For the instability

to occur, the pump wave frequency and wave number w , k must be related to

the decay wave frequencies w,1' 2 and wave numbers k ,k as

W W+ W2 ,and (25a)

1 2

In spatially varying but steady state media, Eq. (25a) is satisfied easily,

but Eq. (25b) is only satisfied exactly locally at, say, x=O. Growth can then

occur in a small region about x=o where the wave number mismatch is not too

great0 . If we say that in the spatially varying case

k -k- = Kx. (26)
1 2

18



and if the growth rate of the parametric instability is y and the group

velocities of the decay waves are V1 and V2, then the number of power e

foldings is 2y 2/K VIV 2. If about 10 e-folds are necessary for a

significant effect, then the condition for the importance of parameteric

instabilities is that

2
2ry > 10. (27)
KV V

Now consider the extension of this analysis to the case of the chirped

microwave pulse. We will work in the reference frame of the group velocity of

this pulse, where the system is nearly time independent. If the frequency

width is Aw, then the equivalent width in k is Ak-Aw/V , where V is the
g g

group velocity of the pump wave. If the length of the pulse is Vgtp, where tp

is the pulse time, then the mismatch condition is given roughly by

K- Au/V 2 t . Since both decay waves are electrostatic, their group

g p

velocities are much less than that of the pump in the lab frame; therefore in

pulse frame they are almost equal, i.e., VC V 2 V . Thus, the condition for1 2 g

significant parametric growth is

2
Yt >
- - 1(28)

9 -8For our X-Band example, Aw- 6x10 and t ~ 2x10 so decay into an ion wave
p

will be important only if y! 6 x18 , a value comparable to the ion plasma

r frequency upi. Since parametric instability growth rates rarely exceed

•pi, it does not seem likely that decay into an ion wave and an electron

plasma wave will be a dominant process.
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We now consider briefly other parametric instabilities specific to

magnetized plasmas. One potential process which could be particularly

dangerous is the decay of the right hand circularly polarized pump (microwave)

"- pulse into a lower frequency sideband and a low frequency whistler wave. All

three waves have nearly the same group velocity. The dispersion relation for

the right hand circularly polarized wave is

k C P2 (29)

as long as k))>w/c. If the pump wave has w-0 and k>>wp/c, then it can decay

into a low frequency wave with

4 2c2 2
2w k c P
p , and w , (30)

1 4 k3 ad 2
c W

and a lower sideband with w = - .,1 k2 = k- k The main effect of the

beating of the two high frequency waves is to produce a force in the direction

Sk, which is along the magnetic field. 9  However, the low frequency whistler

wave only has currents only perpendicular to B so there is no coupling. But,

the sidebands should have small components of their wave number perpendicular

to B, there could be a coupling proportional to k . This is an area for

future study.

The final process we consider is the decay of the pump wave into two

electron electrostatic waves. These have the dispersion relation

2 2 2 2

W k Wk
" 1 pe 14 -pe II = 0 (30)

.2 2  2_2 k2

where the index one denotes the electrostatic wave. These modes must have

20
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frequency less than that of the pump wave for the pump wave is to decay into

them. Let us consider the regime W-0>w (we have been considering
pe

wpm w/2 ). For w4iw, the electrostatic waves only propagate if
pe

o w 1 Min (w p P)  (31a)

or

o I pe" (31b)

Thus, as long as w < 0/2, the parameter range we have been considering,pe

there can be no decay into two electron electrostatic waves.

A comprehensive study of the potential problems of parametric instability

in our pulse compression schemes is very difficult; they will almost certainly

restrict, in some way, the range of parameter space in which the plasma pulse

compressor can operate. But, on first examination, it appears that the plasma

dispersion pulse compression schemes look attractive, at least for the

parameters we have chosen. A more definitive assessment of these high-power

pulse compression concepts, and whether they can be made into practical

devices will require more work, both theoretical and experimental.
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-~ 0.317 x 1022

048 12 16 2
t (nsec)

Figure 5. The optimum density as a function of time for

10 -1
w=6xl0 sec , t =20 nsec, T=60 nsec. The vertical axis is plasma

* .. ~**'frequency squared.
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Appendix A

A Calculation of Pulse Compression

To calculate pulse compression more accurately, say the input wave is

given by

t -

E(t) = H(t) exp-i r w(t ) dt (AI)

where H is an envelope function. To be specific, we will take

2 2
H(t) = E exp - a2t (A2)

0

which, as we will see, makes the calculation somewhat simpler. The Fourier

" •transform of the input wave is

E(P) = I r dt E(t) expiPt (A3)

To each Fourrier component in time P corresponds a spatial wave number

k(P). Thus taking the inverse Fourrier transform, we find that E, as a

function of time and space is given by

v .

E(t,z) = rdPfdt E(t ) expiOt - iPt+iK(P)z. (A4)

To continue, we assume that the frequency variation is small so that

-' K(P) = K + K (P - P ) + I K (P - (A5)
So 2 o

28

7-P-

. . . - -.



where a prime on a K variable signifies a derivative with respect to 0.

. The 0 integral can then be done analytically, yielding

E(t,z) = - rdt E(t ) expi (0 (t - t) + K Z)

1/2 .. . . 2 (A6)

" "2'K K z + t - t
-exp - 2K
K z K z

To continue, we specify E(t' ) by Eqs. (Al) and (A2). This integral can be

evaluation by the method of stationary phase. The exponent is given by

i (t ,t,z) and the stationary phase point is given by

ao ("t2 2 k z t t
_-___t1ct = + P - W(t)-i = (A7)

t K z

To see just what the stationary phase point means, consider first the case of

1 -1
C=o. At 0 w(t ), the group velocity is (dK/dP) - , or

V = K + K (w -) ]. (A9)
J" g

Using this, we can show that In/at 0 when

z - V (t) (t - t ) =0 (A9)
g

Denoting the solution of Eq. (A7 ) by t' = ts (z,t) the saddle point integral

gives the result

E 0expi ,t,Z)
E(t,z)- o 1z ts 1 (A10)

SK z 0 (t ,t'z] ] I/

""- 2 2
where 0 is a (/It. The quantity in the denominator is given

'A ..A 1/2
by f21a K z + K zw (t-1l Again, if a = 0, one can show that the

29
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denominator is proportional to - (z/v ; that is the derivative with

respect to time of arrival time of the pulse. If the denominator is zero, all

parts of the pulse arrive at z at the same time and there is maximum pulse

compression. The limit of pulse compression is then determined by a. The

22 - -
maximum increase in power, (that is E 2 ) is r2a2K z). Using the fact that

at maximum compression, K z = r (t), we find that

P (compressed) . 2 1 2
P (initial) 2 ' 2"' tp (All)

where t is the pulse time. If we consider our standard example of
p

4%, 10
w = 6 x 10 and a 10% variation in w over a pulse time of 20 nsec, we find

Pc /Pin: 60.

%' %

V.
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4', APPENDIX B

£Since a microwave pulse entering a plasma region will ordinarily suffer

large reflection, it may be necessary to have a plasma cell of intermediate

density at the input and output. Let region I be vacuum, and having frequency

and wave number (r,k1 . Let region III be the plasma having r,k 3). In

between (region II) assume a transition plasma cell of intermediate density,

length L and having rw,k2 ). Assume that the boundary condition is that both

the electric field and its first derivative are continuous at each transition

point.

Assuming no reflected wave, the input electric field is E1 expiklx. In

the intermediate region it is E2+ expik 2x + E2_ exp-ik 2x. In the third

region, E3 expik3x. Matching the boundary conditions at each interface, x=O

and x=L gives four homogeneous equations for four unknown E l , E2+, E 2 , E3 .

The condition for non trivial solution is that the determinant of the

coefficient vanishes. Setting up the determinant and evaluating it, it is a

straightforward matter to show that the density of the intermediate plasma is

determined so that

2
k kk (BI)
2 1 3

and the length of the region is determined so that

exp i k 2 L= -. (B2)

Thus by choice of an appropriate transition cell, reflection can be

eliminated.
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